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2. Effect of Grating Thickness

Referring to Figs. 2.4, 2.5 and 2.6, we find that the a\ value is relatively {

low for the backward radiation. It is hoped that by increasing the grating thick-

ness, a\ may be increased substantially so that the backward radiation may also

be utilized for mm-wave antenna systems. An appropriate value of d is chosen

for each value of € and the leakage constant as a function of tg/\ is plotted in

Fig, 2.7. a\ is proportional to t:, for tg small and reaches a saturation value,

f

large value by increasing tg; hence, the backward radiation can be utilized. For

for tg large, as expected. For e =10 and 12, e\ can indeed be increased to a

| £ = 4.0, however, o\ is st1ll too low for a large range of tg and, again, does not

seem to be of any practical interest for mm-wave antenna applications.

3. F requency Scanning of a Radiating Beam i

i The scanning of a radiating beam has been an important problem in antenna
3 applications; especially, the scanning by an electronic mean has been in great |

demand. One important characteristic of a periodic antenna is that the radiating

beam can be scanned electronically by changing the frequency (or equivalently the
wavelength) of an excitation source. Unfortunately, accompanying the beam scan-
ning, other effects may also arise due to the change in frequency. For s sufficiently !
long antenna which is implicitly assumed throughout this work, the most tmportant
| effect is the variation of the beam width during the scanning process. Since the
beam width depends solely on the leakage constant a, we determine here the leak-
age constant along with the radiation angle as a function of the wavelength, with
all other structural parameters being kept constant.

Figure 2.8 shows scanning characteristics of a silicon grating antenna,
! tor two values of periodicity length: d=1.05mm for the forward radiation and
1 d =0.81 mm for the backward radiation, In both cases, a \ reaches a peak value
near X\ = 3mm and decreases almost symmetrically from the peak value as the

wavelength changes. On the other hand, the radiation angle varies almost linearly
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Fig., 2.7. Effect of grating thickness on leakage constant,
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over a wide range of \ around the peak value of a \. These are very desirable
characteristics of the antenna for frequency scanning of a radiating beam, be-
cause we may choose the center wavelength to correspond to the peak value of

o X\ so that we may have a large scanning angle with a relatively small change in
the a \ value. For the sake of discussion, let us choose \ = 3mm as the center
wavelength, at which the beam radiates at about 25° in the forward direction for
d - 1.05mm and in the backward direction for d =0. 81 mm. For a ten percent
(10%) change in wavelength (say, from \ =2.85mm to 3.15mm), the radiating

beam sweeps almost linearly over a scanning angle of about 25° (roughly from

14° to 39%) for the backward radiation and of about 20° (roughly from 15" to 359)

for the forward radiation. Similar results are also obtained for an aluminum

oxide grating antenna, as shown in Figure 2.9,
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III. APPROXIMATE ANALYSIS

An approximate analysis of periodic dielectric waveguides, that was based
on the small difference in dielectric constants of the grating teeth and grooves,
has been carried out by the author [43], and simple analytic formulas have been
obtained tor practical design of optical periodic couplers [ 4 ]. By means of
specific examples, it has been shown that in comparison with the rigorous analysis,
the approximate analytic formulas yield numerical results that are sufficiently
accurate for optical applications. For mmswave antenna structures, however,
the difference in dielectric constants of the grating is often quite large and the
previously obtained analytic formulas may not be generally reliable: a typical
case is shown in Fig., 3.1. Figure 3.1(a) shows the normalized phase constant
used 1 a perturbation analysis, as compared to that obtained from the rigorous
analysis. Since the phase constant determines the direction of a radiating beam,
the change in the phase constants in Fig. 3. 1(a) is too large to be ignored tor the
design of a grating antenna. Also, the change in phase constant may be partly
responsible for the inaccuracy of the leakage constant obtained by the perturbation
analysis, as shown in Fig. 3.1(b). For gratings of high d'u‘l'p,,-ctric constants, it
is therefore necessary to revise the previous perturbation procedures in order
to obtain more accurate analytic results for practical design of grating antennas,

For simplicity, we consider only the case of TE modes. It has been shown
[ 1] that the harmonic amplitudes in the grating region are governed by the

system of coupled differential equations:

B ke

:l_;\nV ”‘nénln 3.1)

L1 i Y Vv ) (3.2)

dz n nnn n

; ; b, 2

by - "o &1 “nd (3.3)
€20

for every n=0,X1, 22 ... and where jn represents the coupling terms, due to the
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periodic variation of the grating. In the absence of the periodic variation of the
grating, jn =0, and Ky and Zn = l’/Yn are interpreted as the characteristic wave
number and impedance of the transmission line model for the grating region.
Instead of treating such a system of differential equations in terms of the eigen-
values and eigenvectors of the coefficient matrix, as employed in the preceding
section, we shall regard jn as a known function and (3.1) and (3.2) can then be
modelled by an independent transmission line with the current source distribution
_|n(z.). It is emphasized here that no approximation has been introduced in deriving
the independent transmission-line equations. Therefore, the present analysis is
based on the exact equations, instead of the approximate ones in the previous
works | 2,3 ].

Outside the grating region, the media are all uniform and each space
harmonic propagates independently as a plane wave. The field solutions for the
plane waves are well known; in fact we may define input impedances for each
space harmonic at the upper and lower surfaces of the grating and the continuity
conditions on the tangential field components can then be translated into the

boundary conditions on Vn and ln in (3.1) and (3.2):

\'n(\\) = -Zn ln(t)) (3.4)

. +
\ Hg) Zn I“(tg) (35}

n

where Z': and Z;‘ are the input impedances of the n-th harmonic looking up at

2 = tg and looking down at z = 0, respectively. Assuming that jn is a known
function, the solutions of the simple transmission-line equations, (3.1) and (3.2),
subject to the boundary conditions, (3.4) and (3.5), can be easily obtained by

standard techniques; for the voltage, we have:

8

t
R V. (2) =32, {O G (2,2 (z')dz' (3.6)

o —

for every n and where Rn and G, are defined by:
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il
= - i C S
Rn 1 O exp(i2 "ntg) (3.7)

W T <3 ' P wt :
Gn(z,z ) = \n[\n exp( ik 2 ) + exp(i K2 )] exp(i p\nz)
+ o -i K = i ' : . ¥ B
+ yn[gxp( ik z') +y, exp(iK z )] exp(i 2 I\ntg) exp(-iK z)

+Rn exp(ixn]z-z'l) (3.8)

in which \: and \;‘ are the reflection coefficients looking up at z = tg and looking

down at 2 = 0, respectively; they are related to the input impedances by:

CHpa % h
2 WL (Zn - Zn)/(zn +Zn) ; (3.9}

If needed, the current In can then be obtained by substituting (3. 6) into (3.1).

With jn given by (3. 3), however, (3.6) is actually a system of coupled
integral equations from which the set Vn is still to be determined. Nevertheless,
(3.6) is in a form that is convenient for applying the iteration technique, so that
Vn can be determined simply and systematically to any desired degree of accuracy.

In the extreme case that the periodic variation in the grating disappears, jn =0

and we must have, from (3.6), for n = 0

- - + 5 N - -
RO =1 Yo Yo exp(xZAo tg) =0 (3.10)
which is recognized as the dispersion relation for a uniform surface waveguide.

In the presence of a periodic variation, (3.6) for n=0 may be recast, after

performing a scalar multiplication by Volz), into the form:

e % Y
Ry =3 <Vol Gyl ) s_n\n>,/<v0|vo> (3.11)
n#*0
in which we have made use of the notations:
t t
& B %
<v|G|lu> = [ [ V (2)G(z,2') U(z') dzdz" (3.11a)
oo
t
g
<v|u> = [ Vi(z)U(z)dz . (3.11b)
o
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In comparison with (3.10), it is evident that the term on the right hand side of the
equality in (3.11) represents the perturbation due to the periodic variation of the
grating on the surface wave of the uniform waveguide. Equation (3.11) is an
exact dispersion relation for the periodic waveguide. In this approach, the effect
ot the periodic perturbation is included in the dispersion relation which will
automatically vield appropriate changes in both real and imaginary parts of the
dispersion roots, Furthermore, the perturbation term in (3.11) is evidently a
variational expression in which a first order approximation in the V's will give
rise to only a second order effect in the ratio. That is, a fairly accurate estimate
of the V's should yield a practically acceptable dispersion root, Therefore, the
present approach is particularly simple for the first order estimate of the leaky

wave constant of a grating antenna.
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IV. RADIATION CHARACTERISTICS OF UNBOUNDED GRATING ANTENNAS --
-- OBLIQUE INCIDENCE

The practical problem with which we are concerned here is depicted in
Fig. 4.1, in which a grating antenna is excited by a surface wave which is guided
by a uniform layer in junction with the antenna at x=0. In the past, the problem
has been analyzed only for the special case of normal incidence (e.g., © =0 in
Fig. 4.1). In such a special case, the fields have no variation along the y-direction
and we thus have a two dimensional boundary value problem of a periodic dielectric
waveguide in which the TE and TM modes can be treated independently in terms of
a scalar potential. When the surface wave is incident obliquely at an angle, 6 # 0,
the periodic waveguide structure becomes a three dimensional boundary value
problem which requires the simultaneous presence of both TE and TM modes, as
previously defined [ 1 ], to satisfy the continuity conditions on all the tangential
components of the electromagnetic fields, as will be shown later. In other words,
TE and TM modes are generally coupled in the case of oblique incidence of a
surface wave. In this section, we present an exact formulation of the three
dimensional boundary value problem, properly taking into account the effect of
coupling between the two modes. As will become self-evident later on, the most
important building block in the formulation of the periodic waveguide problem 1is the
scattering of plane waves by a grating sandwiched between two different uniform
media. Also, such a scattering problem is of great interest in its own right.
Therefore, the scattering of plane waves by a grating will be studied first and
the guiding of waves by a periodic waveguide will then follow.

A, Scattering of a Plane Wave by a Periodic Layer

Consider now the scattering of a plane wave by a periodic layer, g(x), that
is sandwiched between two uniform semi-infinite media. To be consistent with

the waveguide problem, the upper half space is designated as the air region with

the relative dielectric constant = and the lower half space as the film region with
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Fig., 4.1, Cblique excitation of a grating antenna by a surface wave




the dielectric constant £y The direction of the plane wave is specified by the
two angles: o'mc with respect to the z-axis and ¢inc with respect to the x-axis,
as shown in Fig. 4.2, The components of the propagation vector of the incident

wave are:

: in 0 . 4.
kxo kt' e ('uu‘ e ¢inc .13
kyu = kl. sin Oinc sin «p.mc (4.2)
k“) =k, cos 0 (4. 3)
20 t ince
kl' = ko,,cf (4.4)

where k | and kt‘ are the plane wave propagation constants in the free space and the
film region, respectively. It is notad that in the present boundary value problem,
the x- and y-component of the propagation constants must be the same everywhere,
but not the z-component., Theretare, it is necessary to have the superscript f
to denote the region of definition tor the z-component,

Due to the spatial periodicity (of the grating) in x, all the space harmonics
(Fourier components) are generally excited everywhere in the structure; the
propagation constant of the n-th harmonic is related to that of the incident wave by:

k. =ak +2nnfd , for n=0, X1,22,... (4.5)
xn X0

where d is the periodicity of the grating. In particular, in the film and air regions
where the media are spatially uniform, each space harmonic propagates independently
as a plane wave., Although the amplitude of each plane wave remains to be deter-
mined, the propagation characteristics of each plane wave can readily be investi-

gated through the dispersion relation, for the TE and TM modes:

[ R ISR R Y T
. L S el ko (4.06)

where q may stand for either { or a designating the film or air region., It is noted
that the sign of the square root has to be chosen such that the radiation condition

at infinity is satisfied. In the boundary value problem of plane wave scattering,
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kyn and kxo are both real and € and €, are both assumed real for lossless media.
As a consequence, ki‘:‘) is either real or imaginary, depending on n, If ki?‘) is
real, the n-th harmonic is said to be propagating transversely (along z) in the
q-th medium. Otherwise, it is evanescent, From (4.5) and (4.6), it is straight-
forward to show that only a finite number of harmonics can propagate transversely
in the air and film regions. For a propagating harmonic, the direction of propa-

gation in the q -th medium is specified by the two angles:
n‘q' s C()S—l‘k(q),’k ) (4. T)
n zn’ Tp
¢ ;mn"(k fle ) (4.8)
n yo' 'xn :
with respect to the z- and x-axis, respectively. In (4.7), kq is the plane wave

propagation constant in the g-th medium defined by

kq ku JT; (4.9)
which generalizes (4.4). It is noted that in contrast Or(‘q), & 1s independent of
the property of the madium in which the plane wave propagates.

The key to the present boundary value problem is the determination of a
complete set of characteristic solutions of the grating region that are applicable
to a given type of source excitation, We have observed that by a simple coordinate
transformation, the characteristic solutions previously determined for the special
case of normal incidence (of a surface wave) can also be utilized for the general
case of oblique incidence. Such an observation enables us to attack with relative
case the difficult problem being analyzed here.

The characteristic solutions for the grating region have been extensively
analyzed tor many profiles ol the periodic dielectric constant | 1 ]. The general
form of the characteristic solutions are given in Table 4,1 where kt is the
transverse propagation constant (with respect to the direction of periodic varia-

tion), It is noted that V(x) is the potential function for TE modes and I(x) for TM

R e
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TABLE 4.1. Components of characteristic field solutions in an
unbounded periodic medium,

TE mode

TM mode |

Eu = exp(i ktv) V(x)

R - /
Hx (kt w K Eu

Hu = exp(iktv)l(x) {

- /
E [kl‘ wt“c(x)] H,

|
|
H, - cxp(iktv)l(x) | Ev E exp(iktv)v(x)
|
I(x) = -i(1/wp) é-]; Vix) | V(x) = i[l "wt()t (x)] :id_x I(x)

modes. In general, these potential functions can be represented by the Fourier

series (Floquet's solutions), as shown in Table 4.2, along with other associated

TABLE 4.2, Fourier representations for transmission-line
voltage and current and their related quantities.

i Cd n

\ ikxn"
(kt/wp)V(x) 3 1 lno

v ik\I X
I(x) :J(}nc =h

|
|

i TE mode TM modes
<« ik‘nx O ikxnx
e il Sty £ / - /] e
| vz V_e [k /we €11(x) = ), Ve

n

1(x) : ln cxp(ikxnx)

|
ll

V(x) }_: (‘.n exp(ikx X) J

n

the yz-coordinate system in which the st

the former will be called the characteris

coordinate systems is governed by:
U=y cosy -z siny

v=ysiny +zcos

3e

tunctions. Evidently, these characteristic solutions are invariant along the -
direction and propagate along the v-direction. The uv-coordinate system in which

the TE and TM modes exist independently is shown in Fig. 4.3, with respect to

ructure is described. For simplicity,

tic coordinate system and the latter the

structural coordinate system. The transformation (rotation) between the two

(4.9)




Fig. 4.3.

Rotation of coordinate system around the x-axis.
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or in terms of unit vectors:

u u oy L T . co8 -« ¥ _ stny

=0 V')'u & =0 Lo, Y =— b (4.10)
\ \ +V_ B /  s1n +2z CoOs

= 0 ¥ X‘u R =9 l\\ ik -‘-’-n Y

where o is the angle of rotation, as shown in Fig, 3.2. In the characteristic
coordinate system, both TE and TM modes are characterized by only three field
components. As a consequence of the transformation to the structural coordinate
system, both "TE" and "TM" modes have to be characterized by five components
which are given in Table 4. 3.

TABLE 4.3, Field components in the structural coordinate system.

TE mode T™M mode ‘
-i(k y +k_z) -k y tk_z)
E gy “ 0 V(x) H zu e Y TN
\ y i y y
\ ; |
ik y +k _z) -itk y +k_z)
E u_ e Y * Vi(x) H u e Y » I(x)
2 A Z A
|
itk y +k 2z) | ik y +k_2)
' H =v. e 7 £ Ix) E =v. ¢ 2 Vix)
Y Y y y
|
~jk y +k_z) -i(k )y tk_ z) [
Hoav. e 7 2 (x) E =v. e ! “ o v(x)
Z Z , Z z
|
‘ s | ,
i Kk -itk y +k_z) k ik y +k_z)
| M memby Y ) | B semetgmy T f p ]
X w X we_€(x)
L et 1

For a given longitudinal propagation constant, kxo' the complete set of
transverse propagation constants and their corresponding Floquet solutions for
the periodic medium have been previously determined for both TE and TM
modes [ 1 ], While the dispersion relations are identical for TE and TM modes
in a uniform region, as given in (4.6), they are generally different for the two
modes in the grating region. Therefore, we have two different sets of trans-

verse propagation constants and Floquet solutions for the grating regions as
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formnlly; given in Table 4.4, Here, we have made use of the fact that the propaga-
tion constant kyo is continuous everywhere and the propagations constant in the
z-direction is determined by:

/
)22 gh/2

ki, = bl i , for TE modes (4.11)
2 2 2172
" - " .
kt = [(kt ) kyo] , for TM modes (4.12)

It 1s noted that k.zm and k;m can only be either real or imaginary for a lossless
grating. This means physically that the mode can be either propagating or
evanescent if the grating is lossless.

Referring to Fig. 4.2(a), since the plane wave is incident in the forward
direction from the film region, the reflected waves consist of all the space
harmonics propagating in the backward direction. With the y-dependence,
exp(iky0y), understood and suppressed for simplicity, the tangential components

of the field solutions in the film region, z < 0, can be written as:

ot O no

E(x,2) - ;[k&’m elans, expik{Vz) +bmexp(-ik{Da)] explik )

(4.13a)

(f) -\ () (D) \ (1) ;
Ey (x, z) _;uyn[a('1 8,0 Xl kzoz) +bl exp(-\kznz)]exp(x Ken™®

(4.13b)

V \(f)[k

. E o (f i ‘
& Vyn xnmr.otf][aoénoexp(x k(z(lz) tbh expli k(nzz)]exp(x kg™
= J >

Hg)(x,z) = -;\[kg)/u p][a(’)éno exp(i k(zfgz) - exp(-ik::;:z)]exp(ikxnx)

(4.13¢)
f 2 | ¢ W ¢ s . A& .
Hs/ )(x, 2) = \‘—‘t‘viln)[kxn'/"’ ull ay s, oexp(i k(zgz) - b exp(-i kfmlz)] exp(ik  x)
. (4.13d)
+) u(f)[a"ﬁ exp(ik(z'gz) - oxp(-ik(zlgz)]exp(ik‘nx\

«~ “yn' 0o no
n

where a:) and a('; are, respectively, the amplitudes of the incident TE and TM

waves and b:‘ and b; are the n-th harmonic amplitudes of the reflected TE and
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TABLE 4.4, Fourier series representations for
tangential field components.
TE mode TM mode
-3kt = -ik x -1kt =2 -1k x
! o . P Yo, e S CapE s DOE i T SR
ym ym ‘ﬁ‘ mn ym y T\J mn
-jk' z -1k x S e -1k x
- T i R 1 Y Uxn
e I e = e V e
xXm - mn xm "-]l mn
~ik! . ik “ik" oz -1k
' iy an 1 S\ xn n 2 yh e e " ~n . xn
ym ym < 'mn ym ym & “mn
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TM waves, respectively, In the grating region bounded by the two surfaces at
z =0 and tg. the electromagnetic fields consist of both forward and backward

waves, From Table 4.4, the general solutions are:

VB N " " TN " AR, -
B (x, 2) ,T\‘ k@ ]lc Jexplik?  z) +dn exp(- 1k . z)] \n“txp(lk )
(4.14a)
(k) b SR 1 P et b o ot et \' v e : .
> ke n“Qu\'mlkm exp(lkzmz) : dm‘xp( 1k““7.)1 o= \"m‘xp(‘kxnx)
\on " *" " \" A snlt & 5
* ﬁ.‘\yml m SHPILK zm s d (\p( xk““z)] G n (xp(”\xn“
(4. 14b)
{“)(\ z) -\‘[c' exp(ik' z) +d' exp(-'\k' 7)] Yo exp(ik_ x)
g & ’ zm m 5 mn xn
(4. 14¢)
(L‘ N ¢! ex z) - d' e V'a X "
(x,2) = ) \:_m[ 8 p(ll\' = z) (ll exp(-1 /mf)] & (."“ncxp(\kxn\\
m n
+ Y [e" exp(i k" ‘) - d" o\p( ik" =)} Ve exp(ik  x)
iy m zm < 'mn xn’

(4.14d)
Here, all the quantities are known, except the mode amplitudes c¢'s and d's.

Finally, the transmitted waves in the air region, z > t , consist of only the tor-
; 8

ward waves and are given by:

) L ) F a) "
E(a (x,2) = l “‘ (a [ (1) rota]oxp(xk(z:‘z)exp(xkxnx) (4.15a)
(a) e Tat ot®) o oten (&) ; :
F.\A (x,2) = T\e“ uyn exp(i kznz)exp(l kxn\)
(4.15b)
\ a . :
; '\"{(l': vf,'n)[kxn b rnta](‘xp(\k:‘)z)oxp(xkxnx)
- 3
a) ‘@ : 1. (&) :
HL (x, z) 1 vn[k:n) W U]“"P(‘kin ) oxp(lkxnx) (4.15¢)

n
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where el‘1 and er'; are the space harmonic amplitudes of the TE and TM waves in the

( )(x z) = ‘;; nvgn[k yarm | exp(ik(zan)z)exp(ikxnx)
(4.15d)
& L ¢ ( )exp(x ki:)z)exp(ikxnx)
n

air region.

To determine the scattered field amplitudes, we now match the boundary

conditions at the two interfaces of the grating. The continuity of the tangential

field components at z = 0 requires:

Eig)(x.O) - Eg)(xm) (4.16a)
B oot

By @0l = k(5,0 (4.16b)

H®(x, 0) = B (x, 0) (4. 16¢)
) x, 0) = B (x, 0) (4. 16q)

Substituting (4.13) and (4. 14) into (4. 16) and then equating the corresponding

amplitudes on both sides of the equalities, we obtain the following system of

equations:
Ytk Jwe )VA [cr +ar ] = (k(f)/mc Slans b (4.17a)
m
“ ' L} i
_u;m mn[C +d! ] + -Av):mc;'nn[cr.n +dr"'n]
- (4.17b)
f f
u )[a“‘ 5., bl - v(:(kxn/w wlars  +b1]
N Tt [e! - a! ] = (k(f)/ )[a! - b'] (4.17c¢)
& mn'Tm m tn/ @ M350 n
\1 ™ ' " -l 5 ' v n n n d"
r-;"‘ymcmnhm dm] +muymlmn[ ]
(4.17d)

(f) . (). n
= Von (kn/w (a1 6, - bl +u ans

O no

« "
bn]

for everyn = 0,1 1,%2,-.-. Similarly, at z = tg. we must have:
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Eff)(x,:g) E Ef“)(x.tg) (4.18a)
Ei'g)(x,tg) . E‘y"*’(x,tg) (4.18b)
Hig)(x,tg) Hi‘a)(x,tg) (4.18¢)
H‘yg’(x,tg) : Hi'a)(x,tg) (4.18d)

Substituting (4.14) and (4. 15) into (4. 18) and then equating the corresponding
amplitudes on both sides of the equalities, we obtain the following syster:. of

equations:

S(k:muco)vl;n[exp(ik; t )c" +exp(-ik" t )d" )
m

m g m zm g’ m
(4.19a)
- n{@)/ . (@)
= (ktn uco)exp(xkzn tg) el:
N r S 3 = o
l_}_{uym \/mn[exp(xkzmtg)gm + exp( 1k'zmtg)d;n]
(4.19b)
$‘ " " Pl " B "
+ r‘;!‘vym Gmn[exp(1 kzmtg)cm texp(-ik! tg)dm]
_.(a) . () v (@) . (a)
i exp(i kzn tg) e vyn (kxn/w y)exp(xkzn tg)e: (4.19b)
Y‘ 1 i le! 1 - - ' - (a)/ (a) 1
& Imn[exp(x kzmtg)cm exp( ‘kzm tg)d;n]— (ktn w ) exp(kzn tg) el

(4.19c)

1 1 i 1 ' oy o
Vym > S [exp(i R . tg) € - exp(-ik) o tg) d;n]

AL " L . il
+rl;{uym1mn[°xPhkzmtg)cr';\ exp( xk;‘mtg)dr‘n]

- J(3) ; \
e (kxn‘/“’ W) exp(ik

(a)

zn

(a)

., (@)
tg)el'1 + “yn exp(ik, 't )e" (4.19d)

zn g’ n
for every n = 0, t1, 2, ... In the matrix form, (4.17) and (4.19) may be

written succinctly as:

: ke 8 : :
E*Kile +d] =;-K,(a" +b") (4. 20a)
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1 1 1 t n " " n = (f) 1 1 = (() n "
EUy[c +d'] +S Vy[c +d"] Uy [a' +b'] Vy Yx[a +b"]
(4.20b)

H'[c'-d']::l—ﬁKif)[g_'-g'] (4. 20¢)

-_— —

va;[gl - gl] +I"U;[£" i gn] = Vi,f)yx[i' 'E‘] +U§,f)[i" C) E"]

(4.20d)

: % : (a) (@)
n i " dn ] = n
E Kt“[exp(x K;‘ tg)c" + exp( 1Kz tg}d ] Kt exp(i Kt tg)e (4.21a)

1 Al - n n n 1 n n wi EEw n
E'U;’[exp(sztg)g‘ + exp( 1Kztg)§'] +S Vy[exp(ﬂ(z tg)_g_ + exp(-i K} tg)g ]

- uyla) e (@) v oy(@) (@) "
= Uy exp(i Kz tg)g Vy Yx exp(i Kz tg)g (4.21b)
{ O ol (S i RV L [ .___1 (a) (@) 1
H'[exp(i Kz tg)g exp( 1}\2 tg)g 1= G Kt exp(i Kz tg)g (4.21c)

S'V) [exp(iKyt ) e - exp(-iK t )d'] + H' Ur[exp(iK]t )e" - exp(-iK)t )d"]

(a)

Z

(a)

- viddy b
= \y \xexp(xk %

t)e’ +U§'a)cxp(il\' o) (4.21d)

in which the matrices are defined with the general elements: I?.f_:’“)1 = Vfg])],
Y

- 119 gl | Q) (K(q))m 2 Wy uiSh LSV ytah AW,
mn nm mn nm t n tm mn y mn ym mn y mn ym mn

(K!q) = k(Q) ) , Where the superscript may stand for either the single prime,
z n zm mn P

double prime, a or f, and finally (Y_) 0 4

k /wp. a'and a" are column
x'mn mn xn = =

vectors with the incident TE and TM mode amplitudes at the zero-th position and
zero elsewhere. b'and b" are column vectors with bl'_l and br'; as the element at
the n-th position, respectively, and similarly for all other column vectors. Here,
we have eight unknown column vectors to determine in terms of the given vectors

'

a

and a" from the eight vector equations in (4.20) and (4. 21).

Equations (4.20) and (4.21) may appear to be quite complicated, but we
recognize that those matrices with the superscripts a and f are all diagonal and,
hence, the solutions of (4.20) and (4.21) can be obtained with relative ease. Sub-

stituting e' in (4.21c) and e" in (4.2la) into (4.21b) and (4.21d), we obtain the
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super-matrix relation:
+ il - .
- 0 ' a ' '
Fli Flo\/f exel lhztg) d z Fii "Fpo exp(sztg) 0 c
- t 1 L " T iKY U
F 21 F:: 0 exp(-le'ts) d! FZI FZZ 0 exp(\hglg) c*
(4.22a)
where the F's are matrices defined by: :
¥
- R ) ’(a) ~1 (a) [ >
Fyy = E'U) culkT UM H (4.22b)
Aa)-1(a)
- n n " " 2' ~
FIZ S V,_ +[l\t ] \y YxE Kt (4.22¢)
: - QP < (a) =1 o(x) '
Fy = °\y \Jp[Kt ] vy Y H (4.22d)
L Ki”]'luw E" K} (4. 22e)
Furthermore, from (4.22a), we obtain:
d' r r e
Gaf 1200 (4. 23a)
3 1 Tezf \e
with
il W, LT eliane 15g cda o
I‘ll rl AN exp(xhztg) 0 F . F 12 F“ F12 exp(sztg) 0
’ ST i 1 - N - 2 n
I raz 0 cxp(x!\'ztu) Fy, Fyp F,. Fy 0 vxp(sztg)
(4.23b)
Alternatively, (4.20) may be rewritten in the super-matrix form as:
wuH' 0 c! MHY O d' 1 0\/a' s =100\
+ . Ki“ + Ki’)
nyen n " AL} |l " n
0 it'E l\t < OE}.E Kt da" 0 1/\a 0 4FLb
(4. 24a)
E’LV' S"\'H C' "\'l Sl‘\'" (il L](f) _\'(t)\' al l’(t) _\F(I)\- b|
y y i x y £ y ¥ N\ y R e
+ = +
s'v! H'U" /\¢" -s'vi-nrur/\ an vy gl J\an vifly gl e
y y 5 y ) 4 i ¥ S y o \ A y &5

(4.24b)
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where | stands tor the unit matrix. Eliminating b' and b" from the above two

cquations and invoking (4.23), we obtain:
X (). (1)=1 et (f) (1)1 -
E'UY +wuty ' S"V" ¢ . b 2@l
: G « |l\t ] H S ; ':Vy Yxlr\( | 1\(

iU () (£)1- 1 (€)oo (E)n=1 o,
Sy - q0 npn 1 n "
p - WEVUTKT THY HOUS bl v KT EeK]

g
g () ()41 o {5 N | ) W, ,
L U - (r LR k" " z " " -t
. ¢ |l\t ] "H S \y fll\y \xlht ] EKY I“ L L3
N
s AL} pralt)e- A (3 ¢ § T
-« SUNFL & Y I 1% ) A " [ T
4 g 8 1 B 0 be Ul (K¢ ') EUKY L, I, £
bt oy
' . (4.25)
0 zUi,” a"

trom which we can furthe © obtain:

s T Ty
= (4.:())
[y B iy &Y
- 2} L85 =
Finally, invoking (4.23) and (4. 26), we obtain, from (4.24a)
b Rir Rpa\ye
= (4.27a)
l—.)l' [{‘:l Rzz ilI
with
' S H T "
R“ Rld lfwuH(ltr’“) H l"“ I“ 11-1
“ (4.27b)
AELE V] i nen
Rzl R.Z.! rrh Kter l+cfE Kt‘.(l+r42) T21 TZZ

where the R's define the reflection coefficient matrices that properly take into
account the coupling between the TE and TM modes, For a given plane wave in-
crdence, a' and a" are known. The reflected harmonic amplitudes in the € region
1s determined from (4.27a). The mode amplitudes in the grating region are
determined from (4.26) and (4,23). The transmitted harmonic amplitudes are
then determined from (4.21a) and (4. 21c¢). The fields everywhere are thus

completely determined.
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B. Guidance of Waves Along a Periodic Dielectric Waveguide

A surface wave along a dielectric waveguide may be regarded as a plane
wave being bounced back and forth within the waveguide, as depicted in Fig, 4.4
for a periodic dielectric waveguide. The scattering of the plane wave at the
upper surface of the unitorm layer, z -0, has been analyzed in the preceding
section and the scattering by the ground plane at z »-t'_ 18 a trivial problem that
need not be discussed here. Making use of the known results of these scattering
problems, we determine the dispersion relation for the periodic dielectric wave-
quide.

Referring to Fig. 4.4, at 2 =0, the reflection coefficient matrix of the
crating layer is defined in (4.27). Now, imagine that a set of incident plane waves
characterized by the harmonic amplitude vectors a' and a" starts propagating in
the torward direction at z =0. While traversing the unitorm layer, these plane
waves will be reflected back and forth by the grating and the ground plane. Since
the ground plane is taken as a perfect conductor, the reflection coethicient tor
every harmonic is equal to -1. For a guided wave, the harmonic amplitudes
after a round-trip across the uniform layer must remain unchanged, e.g., we

must have:

- .ll\‘(?”t‘.
a' Riy Mgy b 0 a!
- 3 it (4. 28)
n i b f "
& Ra “u 4 . 2
(f) . (1)

as its element at the n-th diagonal position,

where l\'7 18 a diagonal matrix with k
Equation (4,28) is a homogenecous system of linear equations tor which the existence
of a nontrivial solution requires that the coefficient matrix be singular.,  After rve-

arrangement, we obtain:

43




-puusjue Juigeld e ul spow papind ' jo uoijeiaadiajul daem dueld “P°F ‘8131

aup|d punou9

N\ Al .

—
w
44

. rfl"x




-j2k'De -j 2!y
) LB e Y Wl | R e T !
11 id i
. . - = 2] !
det ‘AiJK(”l( .j ZK“)tf 0 (4.29)
R&le . l +R, e s

which is the desired transverse resonance relation or the dispersion relation for
the periodic dielectric waveguide. It is noted that this is an exact digpersion

relation that applies to periodic dielectric waveguides of any structural parameters,

i including those of grating antennas for mm-wave applications. Also, for the

f‘ special case of normal incidence, it can be shown that Rl‘ = R.Zl =0 and (4.29) i

i is then reduced to the two dispersion relations: ;l

. |

4 -j 2kt i

1 det(l +R e "S5 (4. 30a) |

| !

‘ ~j ZK(t)t’. i

: det(l +R, e * Sy (4. 30b)

| for the decoupled TE and TM modes, respectively.
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Theory of Periodic Dielectric W aveguides

S. T. PENG, memBeR, 1eEeg, THEODOR TAMIR, seN1or MEMBER, 1EEE, AND HENRY L. BERTONI, MEMBER, IEEE

Abstract—The propagation of electromagnetic waves along open
periodic, dielectric waveguides is formulated here as a rigorous
and exact boundary-value problem. The characteristic field solu-
tions are shown to be of the surface-wave or leaky-wave type,
depending on the ratio of periodicity to wavelength (d/)A). The
dispersion curves and the space-harmonic amplitudes of these
fields are examined for both TE and TM modes. Specific numerical
examples are given for the cases of holographic layers and for
rectangularly corrugated gratings; these show the detailed behavior
of the principal field components and the dependence of wave-
guiding and leakage char = eristics on the physical parameters of
the periodic configuration.

I. INTRODUCTION

HIN-FILM structures containing a periodic variation

along the film have recently been of considerable
interest in integrated opties because of the important role
they play in applications such as beam-to-surface-wave
couplers, filters, distributed feedback amplifiers and lasers,
nonfinear generation of second harmoriics, and beam reflec-
tion or steering devices of the Bragg type. The periodic
variation is usually obtained by means of a dielectrie
grating, which is superimposed onto the upper surface of a
layered configuration. This dielectric grating is in the
form of a low-loss layer whose appearance falls into one of
two categories: 1) the layer possesses parallel planar
boundaries and its periodicity is produced by a longitudinal
modulation of its refractive index (e.g., a bleached holo-
gram), or 2) the layer contains a homogeneous medium
but its ugper boundary has a periodic variation (e.g., a
grooved prefile obtained by etching). Both types of con-
struction of the dielectric layer are covered by the analysis
presented here.

The operation of devices containing a dielectric grating
depends on the properties of the electromagnetic fields
guided by the structure. These fields appear either as sur-
face waves, which travel parallel to the structure, or as
leaky waves, which are guided by the structure but radiate
or leak energy continuously into the exterior regions. Both
types of waves appear as characteristic (free-resonant)
solutions of the boundary-value problem prescribed by the
thin-film configurations. Such problems have recently been
considered [1]-[14] in the context of several specific
structures, but most of the investigations have employed
approximations that are too restrictive for many practical
cases. The more common approximation has been the

Manuscript received April 2, 1974; revised June 17, 1974. This
work was supported in by the U.S. Office of Naval Research,
under Contract N00014-67-A-0438-0014, and in part by the U.S.
a.;a Services Electronics Program, under Contract F44620-60-C-

The authors are with the Department of Electrical Engineering
ﬂ%’rﬂyﬁﬁ. Polytechnic Institute of New York, Brooklyn,

assumption that the grating periodicity acts as only a
small perturbation in a configuration that, in the absence
of the grating, appears as a planar multilayered medium
[2], (3], (5], [9]. [11], [12]. This approximation yvields
good results only if the periodic change is sufhiciently
small, so that its use may produce erroncous results in
many practical cases, such as thick corrugated gratings
having groove depths comparable to the wavelength
[13], [14]. Another approximation has been the use of a
Rayleigh assumption which incorrectly neglects the
presence of incoming waves in the grating region [27, [4],
[8]. It has been shown [10] that this Rayleigh approxima-
tion may also result in serious errors if the periodic varia-
tion is not sufficiently small. It should also be pointed
out that most of the previous studies have developed their
analysis in the context of spectal cases, which usually
involved not more than three materials or layers; further-
more, some of these studies considered modes having one
polarization only (usually the TE type) rather than both
TE and TM polarizations.

The aim of this paper is to determine the wave-guiding
properties of a very important class af dielectric gratings
by utilizing a rigorous approach, which was briefly reported
on recently in the specitic context of modulated layers [6]
and corrugated gratings [13], [14]. This approach does
not employ any of the approximations mentioned above
and it can be generalized to practically any planar dielee-
tric grating. The generalization is accomplished by first
considering both TE and TM modes in a canonic configura-
tion consisting of a periodic layer bounded by two dif-
ferent media; the analysis is thereafter extended to strue-
tures with an arbitrary number of layered media, of which
the grating configurations examined in the past represent
special cases. A similar rigorous analysis has been reported
by Neviere et al. [10], but their approach requires a
numerical integration which may introduce certain in-
herent disadvantages. Although computer calculations
may still be necessary to achieve highly accurate results
with the method presented here, their precision can be
easily and systematically obtained to any desired order
Furthermore, the solution is already in such a form that 1t
lends itself readily to physical interpretations in terms of
the effects due to the individual partial (space-harmonie)
fields.

For surface waves and feaky waves supported by dielec-
tric gratings, the two aspects of greatest interest are their
dispersion curves and the amplitudes of their space
harmonics. The dispersion curves dictate the proper con-
ditions that must be satisfied for effective operation of
any optical device employing periodic thin-film wave-
guides. The space-harmonic amplitudes determine whether
the desired interaction is efficient or not. The derivation
and caleulation of both the dispersion curves and the

Copyright 1975, by the Institute of Electrical and Electronics Engineers, Inc.
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space-harmonie amplitudes are therefore presented here in z .
detail, and several numerical examples are given to illus- r
trate their varation with respeet to the physieal param- i —p ‘
eters of the periodic configurations. In particular, the 3
. » . . . . 1
role of the grating thickness is discussed and it is shown lmmmm'.'”'.." .° B

that the leakage of energy away from the structure is / ¢

Y : . t
subject to a saturation effect which could not be evaluated : \ L < !
by the approximate methods reported in the past. ‘\a‘\\\\s\ R \V\\
1T, CHARACTERISTIC FIELDS IN THE UNIFORM

REGIONS AND THEIR PROPERTIES ot
O ed ey

The class of periodie thin-film structures considered here {
15 depieted in Figo 1, which shows structures consisting of ||||||||||nmmu‘mmml 'f a5
e AL IS ST /
S

one nonuntform (periodie) region and three uniform planar

1
< » . . < ; - ” _ ¢
regions. The nonuniform region can be regarded as a planar \\\\'s \\
: ¢ o 3 \
layer of constant thickness ¢, whose composition varies B &

periodically along r, with period d. The three uniform (b)

regions include a thin film of thickness t;, an upper (air)

half space, and a lower (substrate) region. In most prac-

tical cases, the substrate thickuness is very much larger “ e

than the wavelength X, so that the lower region may also Tl AT i - d
orhs ;

bhe assumed to be a half space. However, the specitic

{
1

> > L p
four-regions character of the ~t ruv.(un\s sh\.n\ n mn g s \\\ .‘5‘ e \‘\
chosen here only beeaunse of its wide application and the . s\ \\

. > <
results are generalized later to an arbitrary number of

lavers. If desired, the finite thickness of the substrate may — Fig: Lo Varieties of thin-film dielectric gratings. (1) Medium with
g s periodic modulation ol its permittivity. (b) Laver with rectangular
then also be accounted for. corrugations. (¢) Girating with curved protile.

The tields supported by the structures in Fig. 1 are
different in each of the four regions. To tind a solution of
the clectromagnetic problem, it is therefore necessary
to consider the type of (characteristic) waves that may
appear in every separate region. The solution is then con-
structed by choosing a suitable combination of these waves
soas tosatisfy the boundary conditions. We shall therefore
diseuss here the type of fields that oceur in the uniform
regions, after which the fields in the periodie (grating)
region will be examined in Seetion 1. The boundary con-
dittions and the derivation of the field solution is then

structure in the air and substrate regions. These waves
are therefore characterized by real values of 4, = 5., and
maginary values of £, for ) = aand ) = «

When a grating is superimposed on the uniform lavered
structure, the surface-wave ficld is moditied to satisty the
periodic boundary conditions on the grating. Under those
conditions, the field in all of the uniform regions (e,
everywhere except within the grating faver) must appear
in the Floguet form

Ty N ] W 7 4 N o N Q \ . v b . " )
gIven hc"d tion 1V, \\{lh discussions and numerieal B () - Y F 9 oxp [i(hens + ke 2) ), () =g
examples being presented in subsequent sections "

Beeause the widths (along ») of all the lavers are large (3

with respect to the wavelength A, the fields are assumed
to be invariant with respect to the y coordinate, 1o,
@ dy = 0. For simplicity, we also assume that all of the
media involved possess the permeability u, of air (vacuum)
and a time dependence exp (= iwt) is suppressed. If the
periodie layer is absent, the field components of character-
stie waves in the uniform layers appear in the form

where the amphtudes £, of cach partial tield - the
above summation can be found by satisfving both the
boundary conditions at each interface and the periodie
conditions tmposed by the grating. The index n under the
summation sign is understood to run over all values of
no= 004 142 - this convention bemg followed through-
out this work unless otherwise stated. The quantitios 1,
Fylr2) = Fooxp [i(ker + kP2)] (D are related to the fundamental Tongitudinal factor 4, by

where Fyt9 is:n constant and the Floquet condition

ket 4 (AT = k)t o ke (2) Kew = Koo + 20w 'd, (n=0,41.42.¢00) (4

Here A, = 2% X is the plane-wave propagation factor in Because F, (220 must satisfy the Helmbholtz equation
air (vacuum) and the index ; refers to the jth medium,
with j = a (air), f (film), or & (substrate). The quantity
¢ is the relative permittivity of the jth medium. In the
absence of absorption and scattering losses, uniform
layered structures can support surface waves that propa-
gate without attenuation along r and decay away from thegg Roat? = (k= kg2 (6

CF, + kAF, = 0 3

each partial wave now obevs the dispersion relation (20,
which yields
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where the sign in (6) is chosen o that, for real values of
ka0 keat?" 18 cither positive real or positive imaginary. For
complex values of Ay, however, the choice of sign is given
by (10}, as discussed later.

We observe that each nth partial field in (3) may be
regarded as a mode with transverse variation exp (ikza2)
along r, which propagates along z with a propagation
factor A . Henee, within 4 tirite-thickness layer (such as
that of thickness ¢; in Fig. 1], both signs in (6) must be
accounted for because they reter to waves that travel
along the +z or the —z directions. In such a case, each
nth term in (3) includes two separate components, one
each for the 4z and —z directions. In the open (air and
substrate) regions, on the other hand, it is necessary to
retain only that component whose energy flow or decay
is away from the structure

If the grating layer is sufficiently thin, the fundamental
propagation factor k. is very closely given by the propa-
gation factor 8,. of the surface wave on the uniform lay-
ered structure (with no grating). Also, the fields of the
fundamental (n = 0) partial wave are evanescent with
respect to z in the air and substrate regions. However,
even a very thin grating requires the presence of all k. to
satisfy the appropriate boundary conditions; for sucit a
thin grating, all higher (n # 0) coefficients F,’ generalis
possess very small magnitudes. Nevertheless, some of
these higher order partial waves may modify the nature
of the guided waves. This is seen from (6) where, if we
assume that b, = 8,.. we find that k.. mayv be real for
J = a,s if n is negative and the periodicity length d is
sufficiently small. In the air and substrate regions, a real
value for k,.¢” implies that the nth field component
propagates along 2, in contrast to the fundamental
(“‘surface-wave’) component n = 0 which is evanescent
along 2. The propagating nth component accounts for
energy that flows away from the structure, so that the
complete field given by (3) is then no longer a true surface
wave because now not all of the energy flows parallel to
the r direction.

The foregoing features may be clarified by considering
a surface wave incident from the left on & uniform struc-
ture, as shown in Fig. 2. For > 0, a grating is superposed
on the structure but we may first assume that this grating

Leoky - wave beom
" substrate

Fig. 2. Surface wave incident from a uniform region (r < 0) onto
a region containing & periodic perturbation (r > 0). The per-
jodicity modifies the surface-wave field by leaking beams at
angles 8, in the air and substrate regions (; = a, 8). For clarity,
only one such beam is shown in each region. The arrows suggest
energy flux. 49

consists of very small periodic perturbations of the layer
that supports the surface wave. Hence, as the surface
wave enters into and progresses along the grating portion,
a very small amount of field seattering occurs at every
perturbation. Because this scattering is very weak, the
surface-wave field in the grating region is, on a local seale
essentially quite similar to that in the nonperiodic (r < 0)
portion. However, if the grating region is long, the energy
leaked by scattering adds up to a large portion of the
energy brought into the grating region by the incident
surface wave. Because of the regular placement of the
scatterers, the individually scattered fields interfere con-
structively only along certain preferred directions and the
leaked energy appears in the form of beams that radiate
at angles 6,, which are given by

tan 0. = ken/kea'?. (7)

Here 6, is a real angle only for real values of k,.¢'. Along
these real angles 6.4, an energy flux appears in the form
of radiation in the air (j = a) or in the substrate (j = s)
regions.

The foregoing argument implies that, because energy
loss oceurs due to radiation, the complete guided field
must decay with r as it progresses along the grating region.
Henee, the propagation factor k4 along the grating region
cannot remain purely real but, instead, &, 1 changed from
the value 8,« of the surface wave to a complex value. We
therefore obtain

Ken = Ba 4 ta = (8o + 2nx/'d) + ta (8)

where the imaginary term a > 0 is responsible for the
decay due to radiation leakage. We note that (8) indicates
that the longitudinal decay factor a is the same for all of
the partial field components in (3), as required by the
Floquet condition (4). Evidently, (6) implies that 4,,
18 then also complex, so that

Kol = £, 4 9, O, t

We now note that, unlike a, the transverse decay factor
£, is generally different for every n. It is also important
to recognize that « is small in the case of thin gratings
(i.e., small periodic scatterers), but n, may be large or
small depending on n. Because k., is complex, the square-
root sign in (6) must be selected to satisfy!

e 0 as 8,2 0. (10)

Because waves guided by periodic structures generally
contain radiating tield components, these waves are no
longer true surface waves (with kg = real). Instead, they
are referred to as leaky waves (with A. complex). Al-
though these leaky waves were described above in terms of
small periodic perturbations, it should be evident that
the foregoing argument also holds for large periodic
scatterers because the size of the perturbations affects the
leaky waves only quantitatively. Thus the leakage param-
eter a and the higher order (n # 0) amplitudes F." are
small only in the case of small perturbations; as the size

' This choice requires an analytical continustion argument for
kou, 88 discussed mﬂ.‘l.
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of the seatterers increases, a and F . generally also in-
crease and the overall leakage effect becomes more pro-
nounced

1. CHARACTERISTIC FIELDS IN THE
GRATING REGION

I'o find the fields supported by the entire thin-film
structure, it is necessary to examine the characteristic
waves in the periodie layver, which will be henceforth
veferred to as the grating region. As two-dimensional
(v-invariant) fields can be decomposed into TE and TM
modes, the Maxwell equations for the field vectors can be
reduced to the sealar equation

©F, + k(OF, =0 (1)

where now A*(2) is no longer a constant as in (5). We
shall restrict the present discussion to gratings of the type
shown in Fig. 1(a) and (b), for which A*(2) is a function
of r only. The procedure for extending our results to the
more general case having also a 2 dependence, as is the
case in Fig 1ie', is discussed later in Section HHIC. The
electric and magnetie fields E and H. and the parameter
A(r) are then specitied as follows.

TE rodes:

!
E=yF and H= — VX E (12)
W
k(x) = I-,.."l\.l' . (1)
T'M modes
1
H=ye*r')F and E=—VXH (14
we(r)
S e'(.r\]' (&)
K(r) = kle(s) — =] — 4+ —. 15)
& ¥ 4[¢(.r\ 2e(1) A

Here g, 1s a unit vector along y and e(x) denotes the rela-
tive permittivity in the grating region, whose r-dependent
behavior is discussed further below in the context of
specitic examples.

As indicated by (11) (15), a key step in finding the
characteristic solution F, = F,(r.2) in the grating region
requires the specification of & (r) via e(r). Because e(r) is
periodic. ks ean be generally represented by a Fourier
series such that

M) = k23 paexp (2nwr'd) (16)
L]

where the coefficients p, are known for a given grating.
We may then take
Fo= 3 qu(2) exp (thend) (17)

where &, was defined in (4). Inserting this representation

into (111, we obtain the system of differential equations
d?

~q= P (18)

d2? ¢ ¢

where @ = @(z) is a column vector with elements g.(2)
and P = (P,;) is a constant matrix (independent of 2)
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whose elements are defined by
Pot = klpai — kaaldui (e

The system of differential equations (18) characterizes
the couplings between all of the space harmonies in the
grating region. As a result of this coupling, the variation
with respect to z of the waves is considerably more com-
plicated in the grating region than in any of the uniform
lavers. To solve the coupled svstem of differential equa-
tions with constant coefficients, we may assume a solution
of the form

q = cexp () (20)

where « s a propagation constant along 2 in the grating
repion, and ¢ is a constant vector (independent of 2).
Subctituting (20) into (I8), we obtain system of linear
homogy “~ous equations

Pc = ¢ (21)

which states that «? is an eigenvalue of the matrix P. We
therefore obtain the characteristic equation

det [P = &'1] = 0 (22)

where I is a unit matrix of infinite order. Let «.? be an
cigenvalue determined from (22); the corresponding
eigenvector ¢, (with elements ¢.,) can then be obtained
by solving the system of linear homogencous equations
(21). From (20), we thus have a pair of eigensolutions

@m't'(2) = CumeXpP (Ikm2) (23a)
@' (2) = CmoXp { —thnd). (23h)
The s1gn of «, is chosen according to (9) and (100, Thus
the 4+ and — signs In @a't'(2) represent waves that

travel along the positive and negative directions of the
2 axis, respectively.

An inspection of the matrix P reveals that the deter-
minant in (22) is of the Hill type, so that the eigenvalues
xmd may be evaluated by a judicious truncation of the
determinant. By extending to the present case a theorem
on infinite determinants [157], we find that such a trunca-
tion is valid provided

(1/kD) | kltpe = ket = 2| > T’ | P (24)

which must hold for | n | > N, where .V 1s a finite positive
integer and the prime in the summation indicates that the
term ¢ = n is excluded. Because the left-hand side in (24)
is proportional to n® for large [ n ' and the right-hand «ide
is independent of n, the above sufficient condition ts satis-
fied if the Fourier series in (16) converges absolutely . 1f
this condition is not satistied, other mathematical tech-
niques for determining the characteristic solutions in the
grating region have to be employed. For example, for
gratings of the types shown in Fig. 1(b) and (¢), we may
resort to the solution of a boundary-value problem for an
individual cell of length d, as referred to in Section 111B.

We recall that the vector c¢a contains elements caa, s0
that every complete (modal) mth solution F, in the
grating region contains an infinite set of space harmonics,
each of which has an amplitude ¢as. This is in contrast to
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the fields F, in the other (uniform) regions (j # g)
wherein every nth mode contains a single space harmonic,
which forms by itself an independent solution of the per-
tinent wave equation. After determining the values of g,
from (22), all of the coefficients cam can also be found by
using (21) which specifies these coefficients as ratios with
respect to one of them, say cue. The value of ¢uwm can itself
be prescribed by a normalization condition, which may
be chosen to be cam = 1 for the present class of problems.
However, it is important to recognize that all . and ca,
can be found and may be assumed known if e(2) is specified
in (11)-(15).

To illustrate the foregoing concepts, we shall consider
the specific grating structures shown in Fig. 1, which are
of current practical interest.

. Sinusotdally Modulated Mediwm

For the periodic layer of holographic type, which appears
in the structure of Fig. 1(a), a canonic description of its
medium is given by

2x
e(x) = ¢ (l + M cos r r) (25)

where ¢, is the average relative permittivity and M is the
modulation index.

The propagation of TE waves in such a medium has been
extensively investigated by Tawir ef al. [16]; in this case,
the Hill's determinant vielding a. and the Fourier coeffi-
cients cma can be conveniently analyzed in terms of rapidly
convergent continued fractions. The results have then
been applied by Wang [17] to the solutions of TE waves
guided by a slab of the modulated medium in a uniform
and symmetric environment.

For TM waves, on the other hand. the Hill's determinant
has been analyzed by Yeh et al. [I8], but the harmonic
amplitudes ¢.. have not been studied. Recently, a new
formulation for this TM-wave problem has been presented
by Peng and Hessel [19]. This new method of analysis is
particularly useful for analvtically determining the space-
harmonic amplitudes cw. of the electromagnetic fields.
Thus the boundary value problem for this class of dielec-
tric waveguides can now be rigorously treated for TM
waves, in a manner analogous to that of TE waves.

B. Rectangularly Moduwlated Medium

The variation of the medium that forms the grating in
Fig. 1(b) can be deseribed by a rectangular modulation,
which is given by
() =+ (e~e) L[ltr=U) = U =1Md~—d)]

[
(26)

where U'(z) is the unit step function of argument r. In
current practice, & = ¢ and & = ¢, but we shall here let
both & and ¢ be arbitrary so as to cover a larger class of
applications.

If the thickness t, of the grating region is made infinitely
large, we obtain a periodic array of dielectric slabs, whose
characteristic waves have been examined by Lewis and
Hessel for TM modes [207]. In this case, both the dispersion
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relation for obtaining «= and the harmonic amplitudes cua
can be found in terms of closed-form solutions. Hence the
solution of the set of equations (21) and their associated
Hill's determinant (22) can be dispensed with and the
closed forms derived by Lewis and Hessel may be used
instead.

Although TE modes have not been explicitly examined
by Lewis and Hessel, their analysis is analogous to that of
TM modes. Thus, for structures with rectangular corruga-
tions of the type shown in Fig. 1(b), the characteristic
waves that appear in the grating region are known, as was
also the case for structures with a sinusoidally modulated
layer.

C. Curved-Profile Gratings

Because the foregoing two grating profiles possess func-
tions e(x) that are invariant with 2, they lend themselves
directly to a rigorous solution of the boundary-value
problem. In contrast, the curved profile of Fig. 1(¢) is
generally not separable with respect to the r and z coordi-
nates and has been solved, so far, only by employving
numierical integrations [10]. Nevertheless, the approach
described here can be generalized to also solve curved
profiles by using judicious approximations of these profiles

To illustrate this generalization, consider the grating
with slanted boundaries in Fig. 3(a). By partitioning the
grating into fine layers and approximating each of these
by rectangular profiles, we obtain a configuration as
indicated in Fig. 3(b). Although now we have more than
a single periodic layer, each one of them has a rectangular
shape like that in Fig. 1(b) and, furthermore, all of the
layers have the same periodicity d. The analysis of the
multiply layered grating then follows as a straightforward
extension of that for the single grating, as discussed in
Section VB. Although this extension is only an approxima-
tion for the original slanted grating, this approximation
can be made as accurate as desired by subdividing the
grating into sufficiently many fine layers.

A much simpler, but probably less accurate, procedure
for treating a curved-profile grating is to average (for

S
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Fig. 3. Approximation of & curved rmﬁlo by periodic layers with
rectangular shapes. (a) Actual profile. (b) Approximated profile
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every z) the permittivity over z inside the grating layer.
Thus, if the profile of the periodic boundary that separates
the two media with permittivities ¢ and e in Figs. 1(¢)
or 3(a) is deseribed by the function

z=h(r) = hir+ d), for0 <<t (27)
the averaged permittivity becomes
hir)

R
(28)
'd

e(r) = q+ (€ — @)
The problem is then reduced to that of a laver with uni-
form thickness but with varving et as was the case of
the modulated medium in Seetion THC above, exeept that
() i (28%) may contain many sinusoidal terms, Never-
theless, this problem lends itself to the same treatment
involving Hill's functions as the T modes diseussed by
Yeh et ol [18]) and Peng et al. [19]

IV. FIELD SOLUTION FOR PERIODIC LAYERS

After speeifving the fields within the separate lavers of a
dielectric grating structure, we mayv now consider the
boundary-value problem. For this purpose, we simplify
the problem by considering first a single periodic layer
adjacent to two half spaces, as shown in Fig. 4. In this
case, a single periodie laver of thickness ¢, is left. The
presenee of one Cor more ! uniform layerss then accounted
for m Section V by straightforward modifications of the
formal rigorous solution of the cleetromagnetic problem
posed by g 4

Within the periodic (grating) layer, (17) and (23)
imply that the clectric and magnetic ficld components
transverse to ¢ are, respectively, given by
Ey = T (g oxp (ixa2)

-

£ gnl oxXp (= ikm2) ] 2 Vi €XP (Thpur) (20)

"

H, =3 [ga'" exp (Ikm2)
-
— g oXP (= 1kad) ] X Lon OXP (kg ). (30)
n
The above is a modal representation that regards the
fields in terms of modes that propagate in the & direction,
each mth term in the first summation being an independent
mode with amplitudes g, *" that are to be determined.
Because £, and H, are normal to the propagation (2)
direetion. they correspond to either F,, discussed in See-
tion 111, or to its partial 2 derivative, depending on which
of the specific TE or TM modes are considered.

For any given e( ) and for an assumed value of Ay, all
of the quantities k. are known in accordance with the dis-
cussion in Section [T Here V., and 7, refer to voltage
and current amplitudes of space harmonies, respectively,
one set of which is identical to the set of coeflicients ¢,
forming the vector ey discussed in Section HI; thus, for
TE modes we have can = Vs, whereas for TM modes
Can = lan. The other set is related to the first set via
Maxwell's equations, which vield

V-- - Z z-.l-".‘lﬂ' \3')
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Fig. 4. Canouie configuration containing a single periodic layer of
thickness t,

where Z. . 0 is an impedanee that represents the
coupling of the rth harmonte of the magnetie ield to the
nth harmonie of the clectric field. The value of Z,, 9 is
determined by the specifie relationship that relates £, and
H, for each mode via Maxwell's equations (12) and (14).
For example in the ease of a sinusoidally modulated laver
of the type discussed in Section HHEAL we get

l[u‘u-- Ko Joue, for TE modes
Lwnr'V) w
][/.‘..."' weaty [0nr + M (Surr + duinan) )

tor T modes

where 8, is Kronneeker's delta function. For convenienee
we assume now that we wish to solve the tields due to «
plane wave incident at an angle @ from the substrate
region, as shown in Fig. 4. In this case, by = £ sin @ refers
to the wavenumber along » dictated by the mmeident wave
and, in view of (3) in Section 11, the fields in the substrate
are given by

E, = oxp (thyor + tho®2) + T s, oxp (thear — thy,*'2)

33
H, = Yo exp (theor + thu®2)
= T aVa® exp Cikpur — ka2 (34)

n
where it is assumed that the incident wave amplitude is
unity and the amplitudes s, of the seattered waves have
to be determined. The tields in the air region are given by

Ko = 3 ayoxp (thent 4 1k, ®2) (3
He= 3 anl'i® oxp (thend 4+ ko ') (a6
“

)

where ey and A, 0" were detined in (4 and (60, Y00 s
now the characteristic modal admittance

Kan'? wpo, for TE modes
).-U) - (.' - Sl\ (37\
weoe; Ayl for TM modes

and the amplitudes a, are to be determined together with

e e —
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8» and ga‘® by matching the boundary conditions, which
require that the appropriate components in (29), (30),
and (33)-(36) be continuous at 2 = 0 and {,. This leads
to the following systems of equations:

om + 80 = 3 Vaulgn™ + gu™] (38)

Y@ (Son — 8) = X Tan[gn™ — ga™]  (39)

T Vaalexp (ikmty)gm ™ + exp (—ixmty)gn"]

= oxp (the @t )an  (40)
I Fan[XP (1kaly)gm*’ = eXP (—tknle)gm ]

= exp (thea@ty) Ya®a, (41)

for all n = 0,+1,4+2,-+-. These are the four coupled
systems of linear equations that determine the four sets of
unknown scattered harmonic amplitudes a., 8., g.*’, and
g»", as foilows.

Multiplying (40) by Y.©® and then subtracting the
resulting equation from (41), we obtain, in matrix nota-
tion,

9" = exp (1K) Ryexp (1K t,) g’ (42)

where g’ are column matrices with elements ga‘*',
exp (1K t,) is a diagonal matrix with elements §,, eXp (1xmly)
and R, is the reflection coefficient matrix looking into the
air region at z = {,, as given by

R, = (I+ Y.V)\(I - Y.V (43)

with Tand V being square matrices with elements (I) ma =
Ium and (V)am, = V.., respectively, and Y, being a
diagonal matrix with elements ¥, ®8u,.

Next, we multiply (38) by Y.®, add the result to (39)
and invoke (42) to obtain

Sig ) = Tee (44)
with
S, =1 — Roexp (1K,t,) R; exp (1K,t,) (45)

T, =2(I+ Y.V)"Y, (46a)
Ro= (I+ Y. V)'(I- Y. V. (46b)

Here e is a column vector with elements ., ¥, is a
diagonal matrix with elements Y, ®§.,, while T, and R,
ure, respectively, transmission and reflection matrices
looking down into the substrate at z = (.

When the matrix S, in (44) is singular, the fields are in
resonance as discussed in Section V. For nonresonant
fields, the inverse of S, exists and g is then uniquely
determined via (44) for plane-wave incidence. Using (42)
and (44), we then obtain from (38) that the scattered field
amplitudes s. in the substrate are given by the column
vector

s = Ree (47a)

where R is a reflection matrix looking up at z = 0, as
given by

Ry = Ty'[exp (1K) R, exp (1Kt,) — R)S,'To. (47b)
53

If required. the scattered amplitudes a, in the air can be
similarly obtained via (40) or (41), together with (42)
and (44). This would complete the determination of all the
scattered amplitudes a., gn*), and s..

V. THE FIELDS GUIDED BY DIELECTRIC
GRATINGS

As discussed in the Introduction, the fields of greatest
interest are those that can be supported by periodic thin-
film structures in the absence of any wave incident from
the air or the substrate. These tields are those of the sur-
face and leaky waves described in Section 11, which repre-
sent free-resonant solutions of the boundary-value problem
under consideration. We shall discuss these solutions first
for the canonic structure shown in Fig. 4, after which we
shall generalize the result to structures with an arbitrary
number of layers in addition to the single periodic layer of
Fig. 4.

A. Guiding by a Single Periodic Layer

In the absence of a wave incident from an exterior
region, we have a null vector instead of e in (44), which is
then satisfied only if the determinant of S, vanishes,
namely,

det (S,) = det [1 ~ Ryexp UK )R exp 1Kt)] = 0.
(48

This represents the dispersion relation for the guided
(surface or leaky) waves of the grating in Fig. 4 This
relation vields the unknown eigenvalues k. For any such
ks, we can then find all g.* in terms of one of them by
replacing e by 0 in (44). All of the other amplitudes a,,
g-, and s. can thereafter be determined as discussed at
the end of the preceding section.

Because the foregoing analysis regards the fields as
propagating along the z direction, which is normal to the
boundaries, the result of (48) represents the transverse
resonance condition for the present configuration. To
understand the physical significance of this condition, let
us consider the special case when the periodic laver in
Fig. 4 is replaced by a uniform slab (with no periodic
variation). In this case, (48) reduces to

1 ~ rorgexp (2inty) =0 49

where ry and 7, are reflection coefficients looking into the
cubstrate and air regions, respectively, at @ = @ and ¢,
Equaation (49) states the familiar (resonant, surface-wave)
condition that the wave remains unchanged after a round-
trip travel across the laver, the trip including one reflection
at each of the two boundaries [217]. Thus (48) for the
grating laver is a generalization of (49 for the uniform
layer. The transition from scalars in (49) to matnices in
(48) represents the fact that the presence of periodicity
introduces energy coupling from the fundamental (n = 0)
field to its higher order (n # 0) space harmonices.

In the case of a uniform laver, (49) is a transcendental
equation, which may be solved graphically or numerically
to find the propagation factor along the structure For a
periodic layer, (48) is considerably more compheated
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because it involves an infinite determinant which must be o o 3
truncated to solve for the unknown propagation factor ° 2z o Rt 1
Fzo. This determinant is also of the Hill's type, as was the s 4 e :
case in (22, so that its truncation can be carried out very T T7T L il L i
accurately by numerical computer techniques, as dis- B Grating i
cussed further in Seetion VI, = ran | j{
!
B. Guiding by Multilayered Perodic Structures 0" 1 ;
ol . ts Substrate

The results discussed in the preceding section may now ks
be extended to structures that possess several layers which ted
are additional to the single nonuniform (periodie) layer
discussed above. For this purpose, we first recognize that
the electromagnetic problem of the single periodic layver
may be rigorously described by the equivalent transverse g' al
network shown in Fig. 5¢a). In this network, each of the (0! (o) R
semi-infinite transmission line in the air or substrate .
regions represents one of the modes; the characteristic | A Moshukol. ok
admittance ¥, and propagation factor .. have been 8 o
defined in (37) and (6), respectively. All of these trans- ~ —==—==-= § § —--12:0
mission lines are connected to the grating region. which is ‘}-'n‘ c'>, v o
now represented schematically by the box marked B in (¢”| 3 i '
Pigeftm).. 10w el Tea weetead Bs vbge sl Lt S e ———

1f desired, the network deseribing the scattering proper- i o s
ties of the box marked B can be synthesized along the ( Lo o Substrate
lines discussed in [227] for the case of an interface to a e " e
sinusoidally modulated medium. However, this synthesis (o)

Fig. 5. Equivalent transverse unetworks for the sualvsis  of

is not necessary for the purposes of th‘.prv:vn(- work be- dielectric-grating stiuctures. (a) Network for the single-laver con-
Cause We may regard the box marked B in Fig. 5(a) to be figurations of Fig. 3. (b) Network for the <tructures shown in
detined by (47) for §,. We note, on the other hand. that Fig. 1.
the matrix S, describes the coupling of all of the modes to
each other via the periodic properties of the grating region. The above procedure can, of course, be generahzed to
To generalize the result to additional uniform layvers, anv number of lavers that are added below the film laver
consider now the structures described in Fig. 1(a) and A« suggested by Fig. 5. all that is needed is to modify
1(b). These configurations can be represented by the R/ < as to take into account the additional lavers. As
equivalent network of Fig. 5(b), which is obtained by  such a modified expression for Ry involves the input
simply interposing an appropriate set of transmission lines  admittances ¥, looking into a stack consisting of an
of lengths ¢, between the grating and substrate regions. arbitrary number of uniform lavers, the extension is
In this case, we may look down at the plane 2 = —1, and straightforward. The same procedure can be utilized if
define a reflection coefficient additional uniform layers are placed above (rather than
Y0 — §,® h('lm\‘l the grating r(‘g‘in-m. In this case, gl}(' reflection
)'_‘u‘:—’)"‘ﬂ‘ . (50 matrix R, must be ll)‘ndlht‘li to a m:ulr\\ R, ’m a manner
n analogous to that discussed above for R/ Of course,
By utilizing p., we obtain that the input admittance uniform layers may be accommodated both below and on

Pn =

V Ginlat s = 0 in every transmission line is given by top of the grating layer by employing the appropriate
modified expressions Ry and R, at the respective bound-
- YOI : . :
Y, om = I = pnexp (2K 't/) o (51 Aaries of the grating region

Finally. additional periodie (rather than uniform) lavers
can also be accommodated in order to treat structures
discussed in Section IC, This extension i« somewhat
more complicated beeause now we conneet additional boxes
of the form marked B in Fig. 5 rather than just transmis-

R’ = (I14+ Y.V -\(I— Y.V (521 sion line sections. In matrix notation, this extension is

nevertheless conceptually straightforward and the result-

where Y., is a diagonal admittance matrix with elements  ing expressions are relutively simple if all the periodie

Y, ""6ma. By next taking R," instead of Roin (48), the lavers possess the same periodicity d, as preseribed in

transverse resonance condition is extended to the geome-  Section ITIC. As such an extension is bevond the scope of

tries of Fig. 1, which possess the additional uniform laver  this paper, the interested reader should consult reference
of thickness t;. [23] for further details.

1 + paexp (2ik.0ty)

We can use now (45) for R, and replace Y, therein
with V. to get the modified reflection matrix Ry for
the (two-laver) configurations of Fig. 1in the form
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VI. DERIVATION OF NUMERICAL RESULTS

The application of the techniques described above in-
volves the solution of the secular equation, which in this
case is given by the vanishing of the infinite determinant
of S;in (45). We recall that all of the parameters entering
into S, are assumed known, except for k. which is regarded
as the unknown variable for any given frequency w. In
general, however, the quantities k. and cma (in the grating
region) are not known explicitly, so that the determina-
tion of their values is part of the computation process for
finding A .

A first step in the programming of a computer routine
for solving the transverse resonance (secular) relation is
to provide a subroutine for the caleulation of km and cma
for any given combination of k, and k,. As discussed in
Section III, such a subreutine is generally dependent on
the specific grating structure, but it usually involves the
calculation of a suitably truncated determinant of the
infinite matrix defined in (22). After finding the eigen-
values kw of this truncated matrix, the pertinent Fourier
coefficients ¢mn ¢ n be determined from their defining iela-
tion (21). Of course, the accuracy of all xn and ¢, 1s
dependent on the order of the truncated determinant. In
general, this accuraey increases with the order; as the
determinant is of the Hill's type, the truncation needs not
be unduly large for the accuracies required by practical
considerations. However, great care must be exercised
when choosing the rows and columns of the truncated
determinant because an improper choice may considerably
degrade the ultimate accuracy that is obtained. This is
particularly true for calculations involving waves at or
near a Bragg condition in the grating region, i.e., for
values of Bod = Vo(N = £1,+£2,43,-++). A discussion
on this question for the specific case of a sinusoidally
modulated medium is given in [22, appendix]; it is
expected that the considerations presented there apply
also to a more general variation of periodic variations.

The subroutine for determining all required s, and cma
is then introduced into the program that handles ths
caleulation of k;. As was the case for the subroutine, the
program for finding A, also involves the calculation of a
suitably truncated determinant of an infinite matrix S,,
which is again of the Hill's type. Hence the considerations
for truncating S, are similar to those for the subroutine
mentioned above. However, when solving for k.o by using
(48) for the truncated determinant, the computer calcula~
tion (usually involving Newton's iteration method) may
converge very slowly This happens especially with con-
figurations of the type shown in Fig. 1 for which the wave-
guiding process is primarily determined by the uniform
laver rather than by the grating layer. In such cases, the
calculation of A4 is more easily and more accurately per~
formed by utilizing another matrix S, instead of S,.

This is obtained by noting from Fig. 5(b) that at 2 = 0
in the uniform layer, the field amplitudes f,*) are related
by

f& = R (53)

Fig. 6. Variation of Bud for the fundamental TE and TM modes
along a modulated layer as shown in Fi% 4 withe, = 1, ¢ = 3.61,
=225, M < 05, and ¢ = 2d/r. he insert shows the first
stopband for M = 0.08.

where f* are column vectors with elements f,*' and R,
is given by Ry in (47b) with the subseript s replaced by f
in (46). On the other hand, at z = —{;, the same ampli-
tudes satisfy

[a® = pafa) exp (12k 0 ty) (54)
where p, is given in (50). Inserting (54) into (53), we find
SH® = [1 — exp (2R RRIS =0 (53)

where S; is defined by the matrix in the square brackets,
exp (12kst;) and R, are diagonal matrices with clements
Smn €XP (12k 4nPts) a0d dmnpn, respectively. Here det (S;) =
0 expresses the transverse-resonance condition inside
the film layer in a manner analogous to that whereby
det (S,) = 0 expresses this condition inside the grating
layer.

By thus choosing a suitably truncated matrix Sy or §,,
the computer program first finds k.o by solving (48) or
(55), after which the amplitudes a, and s, can be found
by solving the simultaneous set of equations (38)-(41).
The values of Kz = B¢ + ta, together with the magnitudes
of all a, and s,, usually complete the information needed
for the design of a particular dielectric grating structure.

To illustrate some of the results that can be obtained
by the techniques discussed above, we present below
several calculated curves for gratings of the type shown in
Figs. 1(b) and 4.

The Brillouin diagram for a modulated layer is given
in Fig. 6 for ‘he lowest (fundamental) TE, and T\,
modes. As predicted by the argument given in connection
with Fig. 2, these dispersion curves show that the wave-
number 8, is very closely equal to the value 8,. of the
surface wave along a uniform (M = 0) layer. In fact, for
values of M < 0.5, it is not possible to distinguish 8, from
B On the scale of Fig. 6. In agreement with the theory
of surface waves along uniform layers [21], the dispersion
curves in Fig. 6 lie between the straight lines OB and OC
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Fig. 7. Vanation of the attenuation parameter a with frequency
for the same grating as that in Fig. 6. The range shown allows
for either a single beam in the substrate (e.g., point Q in Fig. 6)
or for two beams, one each in the substrate and air regions (e.g.,
point R in Fig 6). Inside the stopband, a becomes very large
and reaches a peak which is well outside the vertical range shown.

through the origin, whose slope is given by cot ! (&'*)
and cot ' (¢,'*) . respectively.

The presence of periodieity manifests itself most strongly
by causing stopbands at frequencies for which a Bragg
condition 8yl = V(N = 4+1,42.--+) is satisfied. Such
a stopband region is illustrated in Fig. 6 by insert A,
which shows both 8od and ad around gyd = = in magnified
form. For wavelengths X inside this stopband, the tield
of the surface wave is in the form of a decaying standing-
wave with respeet to the r direction.

Besides producing stopbands, the presence of periodicity
may also change the surface waves into leaky waves, as
discussed in Section 11, To assess this, we reflect the lines
OB and OC about 8yd = = to obtain FG and HG. By taking
into account the slopes of the various lines in conjunction
with (6), we may verify that, for j = a and s, all £,,¢ are
pure imaginary instde the triangular region OLG. However,
k. is real outside this triangle, whereas both k, ¢ and
ke 1® are real outside the larger triangular region OLG.
Thus at frequencies for which the operation point is inside
the smaller triangle OLG (e.g., point P), the surface wave
remains bound even if periodicity is present. As frequency
inereases and the n;n-rutin;l point crosses the line FG (e.g.,
point 1, a radiation beam occurs in the substrate and the
surface wave is changed to a leaky wave. For frequencies
that are high enough so that the operating point is above
the DG hine (e.g., point £, radiation beams oceur in both
substrate and air regions.

The attenuation parameter o, which is due either to a
staphand or to power leakage, is shown in Fig. 7. As fre-
quency varies, a starts by being zero in the surface-wave
region; however, a is nonzero and peaks strongly in the
stopband region. This stopband behavior is of importance
in the operation of distributed-feedback lasers and the
maximum value of a determines the length required for
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Fig. 8. Variation of the space-harmonic amplitudes a. with fre-
quency for the TEq made along & rectangular grating.

effective lasing conditions. Outside the stopband a is
nonzero if the frequencey is high enough to produce radia-
tion, i.e., the wave is leaky. As seen in Fig 7. a vares
slowly with frequeney in the leaky-wave region, exeept in
the vicinity of certain eritieal values of ¢ '\, These eritieal
values of d/\ are associated with the presence of Wood's
anomalies along gratings [24 ]; in the present ease, these
correspond to the onset of additional leakyv-wave heams
in the air or substrate regions. However, for TN modes,
additional nulls may appear for a, which are due to a
Brewster-angle phenomenon for a higher (7 = 0) harmonie
inside the grating layer. Such a case is shown hy the null
in a for TM; at about d '\ = 0.43.

For both surface-wave and leaky-wave applications,
the amplitudes a, are of great interest because their
magnitudes determine the efficieney of devices that employ
waves guided by periodie structures. We therefore show
in Fig. 8 the variation of a s, @ y, and ay (with a, = 1) for
the fundamental TE, mode along a rectangular grating of
the type shown in Fig. 1(b). We recall that a, denotes the
amplitude of the nth space harmonic at the air-grating
boundary z = {,. As the Brillouin diagram is basically
similar to that already given in Fig. 6, it is omitted here,
but its pertinent stopband and leaky wave regions are
indicated in Fig. 8. It is noted that the curves for a,
undergo rapid variations close to the stopband edges. Also,
wenotethat |a | = ay = land | a | ay | within the
stopband, in agreement with the fact that the field i< a
standing wave in the stopband.

Although some of the foregoing curves could have been
calculated by the approximate teehnigues reported in the
past [27-05], [7109], [12] their accuracy should be
checked by a rigorous method such as that presented here.
To show the importance and the generality of the method
discussed in this paper, we show in Fig. 9 the variation of
a for the same grating as that of Fig. 8, except that now
the wavelength X is assumed fixed and the grating thickness
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Fig 9 Vanation of a with the grating thickness {, for the same
grating as in Fig. 8 The solid curve shows the exact result whereas
the dashed line refers to a result obtamed by a perturbation
Analysis,

t, varies. In this case, a perturbation analysis [5] would
vield the dashed eurve, for which o inereases continuously
with #, In contrast, our rigorous treatment vields the
solid eurve, which indieates that a\ reaches a saturation
value close to 0.02 for values of {, X > 0.2

The behavior of the solid curve in Fig. 9 can easily be
explained by noting that the basie surface wave along a
uniform (£, = 0) layer has an evanescent field in the air
region. When increasing ¢, from zero, we perturb this sur-
face wave field by adding material on top of the uniform
film of thickness ¢, At first, this material appears in a
region with strong fields and therefore the effect on a is
appreciable. However, as ¢, increases further, the addi-
tional material appears in regions where the field has
gradually decaved until, at about ¢, '\ = 0.2, any further
addition of material occurs in regions where the field is
exponentially small. Consequently, the effect of increasing
1, beyvond 0.2\ is negligible and a approaches a constant.

The above is only one example of the serious discrepan-
cies that may occur between an exact result and that
obtained by approximate techniques. Although the method
presented here may be somewhat cumbersome to use, such
a method is essential tf one wishes ta verify the vahdity of
simpler but approximate results of unknown aceuracy.
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